








2025-12-06 14:05:34
同遠(yuǎn)的陶瓷金屬化技術(shù)優(yōu)勢 深圳市同遠(yuǎn)表面處理有限公司在陶瓷金屬化領(lǐng)域擁有明顯技術(shù)優(yōu)勢。其研發(fā)的 “表面活化 - 納米錨定” 預(yù)處理技術(shù),針對陶瓷表面孔隙率與表面能影響鍍層結(jié)合力的難題,先利用等離子刻蝕將陶瓷表面粗糙度提升至 Ra0.3 - 0.5μm,再通過溶膠 - 凝膠法植入 50 - 100nm 的納米鎳顆粒,構(gòu)建微觀 “錨點(diǎn)”,使鍍層附著力從傳統(tǒng)工藝的 5N/cm 躍升至 12N/cm 以上,遠(yuǎn)超行業(yè)標(biāo)準(zhǔn),為后續(xù)金屬化層牢固附著奠定基礎(chǔ)。在鍍鎳鈀金工藝中,公司自主研發(fā)的 IPRG **技術(shù),實(shí)現(xiàn)了鍍層性能突破,“玫瑰金抗變色鍍層” 通過 1000 小時鹽霧測試(ISO 9227),表面腐蝕速率低于 0.001mm/a;“加硬膜技術(shù)” 讓鎳層硬度提升至 800 - 2000HV,可承受 2000 次以上摩擦測試(ASTM D2486),有效攻克傳統(tǒng)鍍層易磨損、易氧化的行業(yè)痛點(diǎn),確保陶瓷金屬化產(chǎn)品在復(fù)雜環(huán)境下的長期穩(wěn)定使用 。厚膜金屬化通過絲網(wǎng)印刷金屬漿料,經(jīng)燒結(jié)使金屬層與陶瓷牢固結(jié)合。深圳碳化鈦陶瓷金屬化處理工藝

提高陶瓷金屬化的結(jié)合強(qiáng)度需從材料適配、工藝優(yōu)化、界面調(diào)控等多維度系統(tǒng)設(shè)計(jì),重心是減少陶瓷與金屬的界面缺陷、增強(qiáng)原子間結(jié)合力,具體可通過以下關(guān)鍵方向?qū)崿F(xiàn): 一、精細(xì)匹配陶瓷與金屬的重心參數(shù) 1. 調(diào)控?zé)崤蛎浵禂?shù)(CTE)陶瓷(如氧化鋁、氮化鋁)與金屬(如鎢、鉬、Kovar 合金)的熱膨脹系數(shù)差異是界面開裂的主要誘因??赏ㄟ^兩種方式優(yōu)化:一是選用 CTE 接近的金屬材料(如氧化鋁陶瓷搭配鉬,氮化鋁搭配銅鎢合金);二是在金屬層中添加合金元素(如在銅中摻入少量鈦、鉻),或設(shè)計(jì) “金屬過渡層”(如先沉積鉬層再覆銅),逐步緩沖熱膨脹差異,減少冷熱循環(huán)中的界面應(yīng)力。 2. 優(yōu)化陶瓷表面狀態(tài)陶瓷表面的雜質(zhì)、孔隙會直接削弱結(jié)合力,需預(yù)處理:①用超聲波清洗去除表面油污、粉塵,再通過等離子體刻蝕或砂紙打磨(800-1200 目)增加表面粗糙度,擴(kuò)大金屬與陶瓷的接觸面積;②對高純度陶瓷(如 99.6% 氧化鋁),可通過預(yù)氧化處理生成薄氧化層,為金屬原子提供更易結(jié)合的活性位點(diǎn)。深圳氧化鋁陶瓷金屬化哪家好陶瓷金屬化可提升陶瓷導(dǎo)電性與密封性,滿足電子封裝嚴(yán)苛需求。

陶瓷金屬化的環(huán)保發(fā)展趨勢:減少污染與浪費(fèi)環(huán)保已成為制造業(yè)發(fā)展的重要方向,陶瓷金屬化也在向綠色環(huán)保轉(zhuǎn)型。一方面,在金屬漿料研發(fā)上,減少鉛、鎘等有毒元素的使用,推廣無鉛玻璃相漿料,降低生產(chǎn)過程中的環(huán)境污染;另一方面,針對貴金屬漿料成本高、浪費(fèi)嚴(yán)重的問題,開發(fā)銅漿、鎳漿等非貴金屬漿料替代方案,同時優(yōu)化工藝,提高金屬漿料的利用率,減少材料浪費(fèi)。此外,部分企業(yè)還在探索陶瓷金屬化廢料的回收技術(shù),對廢棄的金屬化陶瓷基板進(jìn)行金屬分離和陶瓷再生,實(shí)現(xiàn)資源循環(huán)利用。
陶瓷金屬化,即在陶瓷表面牢固粘附一層金屬薄膜,實(shí)現(xiàn)陶瓷與金屬焊接的技術(shù)。在現(xiàn)代科技發(fā)展中,其重要性日益凸顯。隨著 5G 時代來臨,半導(dǎo)體芯片功率增加,對封裝散熱材料要求更嚴(yán)苛。陶瓷金屬化產(chǎn)品所用陶瓷材料多為 96 白色或 93 黑色氧化鋁陶瓷,通過流延成型。制備方法多樣,Mo - Mn 法以難熔金屬粉 Mo 為主,加少量低熔點(diǎn) Mn,燒結(jié)形成金屬化層,但存在燒結(jié)溫度高、能源消耗大、封接強(qiáng)度低的問題。活化 Mo - Mn 法是對其改進(jìn),添加活化劑或用鉬、錳的氧化物等代替金屬粉,降低金屬化溫度,雖工藝復(fù)雜、成本高,但結(jié)合牢固,應(yīng)用較廣?;钚越饘兮F焊法工序少,一次升溫就能完成陶瓷 - 金屬封接,釬焊合金含活性元素,可與 Al2O3 反應(yīng)形成金屬特性反應(yīng)層,不過活性釬料單一,應(yīng)用受限。陶瓷金屬化,推動 IGBT 模塊性能升級,助力行業(yè)發(fā)展。

陶瓷金屬化的主流工藝:厚膜與薄膜技術(shù)當(dāng)前陶瓷金屬化主要分為厚膜法與薄膜法兩類工藝。厚膜法是將金屬漿料(如銀漿、銅漿)通過絲網(wǎng)印刷涂覆在陶瓷表面,隨后在高溫(通常600-1000℃)下燒結(jié),金屬漿料中的有機(jī)載體揮發(fā),金屬顆粒相互融合并與陶瓷表面反應(yīng),形成厚度在1-100μm的金屬層,成本低、適合批量生產(chǎn),常用于功率器件基板。薄膜法則利用物里氣相沉積(PVD)或化學(xué)氣相沉積(CVD)技術(shù),在陶瓷表面形成納米至微米級的金屬薄膜,精度高、金屬層均勻性好,但設(shè)備成本較高,多用于高頻通信、微型傳感器等高精度場景。
常見的陶瓷金屬化工藝有鉬錳法、鍍金法、鍍銅法等,可依不同需求與陶瓷特性選擇。深圳氧化鋁陶瓷金屬化哪家好
進(jìn)行陶瓷金屬化,需先煮洗陶瓷,再涂敷金屬,經(jīng)高溫氫氣燒結(jié)、鍍鎳、焊接等步驟完成。深圳碳化鈦陶瓷金屬化處理工藝
氧化鈹陶瓷金屬化技術(shù)在電子領(lǐng)域有著獨(dú)特的應(yīng)用價值。氧化鈹陶瓷具有出色的物理特性,其導(dǎo)熱系數(shù)高達(dá) 200 - 250W/(m?K),能夠高效傳導(dǎo)電子器件運(yùn)行產(chǎn)生的熱量,確保器件穩(wěn)定運(yùn)行;高抗折強(qiáng)度使其能承受較大外力而不易損壞;在電學(xué)性能上,低介電常數(shù)和低介質(zhì)損耗角正切值使其在高頻電路中信號傳輸穩(wěn)定且損耗小,高絕緣性能可有效隔離電路,防止漏電。通過金屬化加工,氧化鈹陶瓷成為連接芯片與電路的關(guān)鍵 “橋梁”。當(dāng)前主流的金屬化技術(shù)包括厚膜燒結(jié)、直接鍵合銅(DBC)和活性金屬焊接(AMB)等。厚膜燒結(jié)技術(shù)工藝成熟、成本可控,適合大批量生產(chǎn),如工業(yè)化生產(chǎn)中絲網(wǎng)印刷可將金屬層厚度公差控制在 ±2μm 。DBC 技術(shù)能使氧化鈹陶瓷表面覆蓋一層銅箔,形成分子級歐姆接觸,適用于雙面導(dǎo)通型基板,可縮小器件體積 30% 以上 。AMB 技術(shù)在陶瓷與金屬間加入活性釬料,界面強(qiáng)度高,能承受極端場景下的熱沖擊,在航天器傳感器等領(lǐng)域應(yīng)用 。深圳碳化鈦陶瓷金屬化處理工藝