2025-07-06 03:27:17
起源與誕生20世紀40年代末,美國帕森斯公司在為美國空軍研制飛機的螺旋槳葉片時,因受制于其制作工藝要求高,開始研制計算機控制的機床加工設備。
1951年,首臺電子管數控車床樣機被正式研制成功,成功地解決了多品種小批量的復雜零件加工的自動化問題。
1952年,美國麻省理工學院研制出一套試驗性數字控制系統(tǒng),并把它裝在一臺立式銑床上,成功地實現了同時控制三軸的運動,被稱為世界上首臺數控機床,不過這臺機床屬于試驗性的。
1954年11月,在帕爾森斯基礎上,首臺工業(yè)用的數控機床由美國本迪克斯公司研制成功。
1958年,美國又研制出了能自動更換刀具,以進行多工序加工的加工中心,標志著數控技術在制造業(yè)中的重大突破,具有劃時代的意義。 數控車床的防護門能有效防止切削液飛濺和切屑傷人。高精度數控車床售后服務
根據加工工藝選擇合適的刀具,如外圓車刀、內孔車刀、螺紋車刀等,并檢查刀具的切削刃是否鋒利,有無破損或裂紋。將選好的刀具安裝在刀架上,確保刀具安裝牢固,刀桿伸出長度適中。一般情況下,刀桿伸出長度不超過刀桿直徑的 1.5 倍,以保證刀具在切削過程中的剛性和穩(wěn)定性。對刀操作:使用對刀儀或手動試切對刀方法,確定刀具相對于工件坐標系的位置,并將刀具偏置值準確輸入到數控系統(tǒng)中。在對刀過程中,要注意操作的準確性和**性,避免刀具與工件或夾具發(fā)生碰撞。江蘇穩(wěn)定數控車床簡介數控車床的對刀儀能快速準確地確定刀具與工件之間的相對位置。
參數設置根據工件的材料、刀具的類型以及加工要求等,設置合適的切削參數,包括主軸轉速(S)、進給速度(F)、切削深度(ap)等。例如,加工鋁件時,主軸轉速可適當提高,而加工硬鋼件時,主軸轉速則需降低,同時進給速度也要相應調整,以保證加工質量和刀具壽命。設置刀具補償參數,如刀具半徑補償(G41/G42)和刀具長度補償(G43/G44)。在刀具磨損或更換刀具后,要及時修改刀具補償值,以保證加工尺寸的準確性。還可根據需要設置其他參數,如機床的工作模式(自動、手動、MDI 等)、加減速時間常數、坐標系選擇等。
車削中心車削中心是在全功能數控車床的基礎上進一步發(fā)展而來的。它不僅具備全功能數控車床的所有功能,還增加了動力刀具功能和 C 軸功能。動力刀具可以在車削過程中進行銑削、鉆削、攻絲等加工操作,使得車削中心能夠在一次裝夾中完成回轉體零件的多種加工工序,減少了工件的裝夾次數,提高了加工精度和生產效率。例如在加工一些復雜的軸類零件時,車削中心可以先進行外圓車削,然后利用動力刀具進行軸上鍵槽的銑削、螺紋孔的鉆削和攻絲等操作,避免了因多次裝夾帶來的定位誤差。車削中心在航空航天、精密機械制造等制造業(yè)領域應用很多,適用于加工對精度和表面質量要求極高、形狀復雜且加工工序多的回轉體零件。數控車床的刀具路徑規(guī)劃需要考慮工件的材料特性和加工余量。
零件尺寸和精度要求:
零件的尺寸范圍決定了數控車床的規(guī)格。比如,加工小型精密零件,如手表零件,床身規(guī)格較小、但精度極高(精度可達到微米級別)的數控車床就比較合適;而如果要加工大型的風電主軸等零件,就需要大型數控車床,其床身回轉直徑和**大加工長度都要足夠大。精度要求也是關鍵因素。對于航空航天、**器械等高精度行業(yè)的零件加工,需要選擇精度高、穩(wěn)定性好的數控車床。一般來說,數控車床的定位精度應在 ±0.01mm 以內,重復定位精度應在 ±0.005mm 以內,才能滿足高精度零件的加工需求。 數控車床的操作面板方便操作人員輸入指令和監(jiān)控加工狀態(tài)。上??煽繑悼剀嚧采a廠家
數控車床的主軸轉速可以根據加工需求在較大范圍內靈活調整。高精度數控車床售后服務
自動加工將機床工作模式切換至 “自動” 模式,按下 “循環(huán)啟動” 按鈕,數控車床開始按照輸入的加工程序自動運行。在自動加工過程中,要密切觀察機床的運行狀態(tài),包括坐標軸的運動、主軸轉速、切削聲音、切屑形狀以及加工尺寸等。若發(fā)現異常情況,如刀具破損、機床振動過大、加工尺寸偏差等,應立即按下 “緊急停止” 按鈕,停止機床運行,并排查故障原因。加工過程中,可通過數控系統(tǒng)的顯示屏實時查看加工進度、剩余加工時間以及各坐標軸的當前位置等信息。同時,要注意冷卻液的噴射情況,確保切削區(qū)域得到充分冷卻和潤滑。高精度數控車床售后服務